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ABSTRACT 
Fractional electro-hydrodynamic blood flow with 

magnetic nanoparticles through the arteries with 

applied magnetic field as a non-Newtonian fluid of 

Jeffrey model was modeled, and the analytical 

solution of the fractional differential equation 

obtained from the modeling was obtain by the use 

of Laplace and Henkel transforms. The numerical 

solution is obtained to compare the effect of 

Womersley parameter, Hartmann number, and 

Jeffrey parameter, on the motion of the fluid and 

magnetic nanoparticles between the fractional fluid 

model and the classical fluid model.   

Key words:Non-Newtonian Fluid of Jeffry Type, 

Fractional Model,Stenosis Arteries 

 

I. INTRODUCTION 
In the last few decades, researchers 

consider a lot of bio-fluids (blood) as a non-

Newtonian fluid because of their rheology in 

nature, blood flow is essential in maintaining life 

due to its importance in transporting oxygen and 

nutrients to all parts of the body and removing 

metabolic waste away from the cells. Blood is 

considered as a non-Newtonian fluid due to it 

complex dynamic processes which contribute to the 

shear-thinning, viscoelastic and thixotropic 

behavior. The application of simulation of blood 

flow is very important in the process of decision 

making during treatment of cardiovascular diseases 

such as Atherosclerosis, Aneurysms, and Stenosis 

and so on, which are the major causes of mortality 

and morbidity in the developed world (Morovec 

and Liepsch 1983, Chaturani and Pannalagar 1985, 

Janel and Moura 2010, Chen and Lu 2004, 

Bernsdorf and Wang 2009, Mandal 2015 and 

Padma et al 2019). Blood composed of blood cells 

in blood plasma (Plasma which constitute 55% of 

blood fluid, is mostly water 92% by volume), and 

contains dissipated proteins, glucose, mineral ions 

hormones and the blood cell. The blood is a 

concentrated suspension of cellular element which 

are in aqueous solution with the following 

constituent, red blood cell which contains negative 

charge carriers that creates magnetic field on the 

wall of the artery, white blood cell, platelets, and 

the plasma contain electrolytes and organic 

molecules (Mandal 2015, Padma et al 2019, 

Yakubu et al 2020, and Yakubu et al 2021). To 

capture the rheological response of the blood over 

some physiological conditions, an accurate 

constitutive mathematical model is required in 

order to have meaningful hemodynamic 

simulations Janel and Moura (2010).In recent 

decade, researchers become more interested in 

fractional calculus, for its applications in various 

scientific, engineering system, biological science 

and medical diagnostics Abdulhameed et al (2017), 

Ionescu et al (2017) and Baleanu et al (2012).  

Due to their widely application in different 

field, fractional derivatives has been documented in 

a lot of literatures for their flexibility in describing 

the behaviors of non-Newtonian fluid Ionescu et al 

(2017), Machado et al (2011), Liu et al (2011), 

Nadeem (2007), Haitao (2009), Nauman et al 

(2019) and Jinghua et al (2019). And the 

noteworthy model among the non-Newtonian fluids 

with convective derivative on the phenomena of 

relaxation and retardation time is the Jeffrey model. 
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Many studieswere conducted on Jeffrey model. See 

examples:Ponalagusamy(2017),Priyadharshini and 

Ponalagusamy (2017), Akbar et al (2011a), Nallapu 

and Radhakrishnamacharya(2014), Ponalagusamy 

(2016), Sharma and Yadava (2017), Hayat et al 

(2015), Akbar et al (2011b), Vajravelu et al (2011) 

and Akbar et al (2012). 

Recently, the world of Mathematics is 

moving towards fractional calculus (fractional 

derivatives) because it application toward given a 

better and general description of the issue in 

questions.Based on the aforementioned rationales, 

the model presented by Padma et al (2019) was 

limited to the classical model of non-Newtonian 

fluid of Jeffrey type only. In order to improve the 

model, the present study aimed at extendingthe 

work of Padma et al (2019) toa fractional order 

derivative because of its advantage over a classical 

model.Besides, the above literature considered 

blood as a classical non-Newtonian fluid and 

Padma et al (2019) consider magnetic field, 

magnetic nanoparticles and applied electric field as 

classical fluid, while Yakubu et al (2020) and 

Yakubu et al (2021) consider blood as fractional 

non-Newtonianfluid (Maxwell and Burger’s 

fluids). However, despite relevant studies on 

Jeffery fluid model, the effect of electric field on 

the model has not being into consideration, hence 

this arose the researchers’ attention in coupling 

blood as a fractional Jeffery fluidand the effect of 

electric field in the present study. 

 

II. MODELING OF THE PROBLEM 
2.1 Schematic diagram of the problem 

 The studyconsiderered incompressible, 

pulsatile, laminar and axisymmetric blood flow in 

smaller arteries with low shear rate having a flow 

pattern of non-Newtonian fluid of Jeffrey model 

with magnetic nanoparticles through a cylindrical 

arteries segment of length L. The cylindrical 

coordinatesare considered to represent the direction 

of the flow in axial, radial and circumference 

directions respectively. 

 
 

Figure 1: Geometry of the Non-Tapered Stenosed Artery with Different Shape Parameter m = 2,4 and 8 

 
Figure 2: Geometry of the Tapered Stenosed Artery with Different Tapered Angle 
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2.2.1 Constitutive equation of the Jeffery fluid Model 
 

The Naiver-Stoke equation governing the blood motion, the constitutive equation of the Jeffrey fluid 

model and the magnetic field equations are defining as: 

t

B
EJBB




 ,,0 0                               (1) 

where B and E represent the flux intensity of the magnetic and electric fields respectively,  

where J is the density of the current which can be obtained from the  generalized Ohm’s law as: 

 ,BVEJ                                 (2) 

where V  and  are the flow velocity field and the electric conductivity respectively. 

The resultant electromagnetic body force acting on the on the blood is given by: 

  BBVEEBJEF eeemf         (3) 

where 
efu ,  and zE are the fluid velocity in the axial direction, the free electric charge density and the 

component of external electric field in the axial direction respectively. Hence the net electromagnetic body force 

introduced on the momentum equation is given by: 

f
zeemf uBEF

2

0           (4) 

 

2.3 Basic Flow Equations 

When fluid is in motion, it must move in such a 

way that mass is conserved. In fluid dynamics, the 

continuity equation states that the rate at which 

mass enters a system is equal to the rate at which 

mass leaves the system plus the accumulation of 

mass within the system. The differential form of 

the continuity and momentum equation of the 

unsteady fluid flow of Jeffrey fluid are described 

as: 
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And the extra stress tensors of Jeffrey fluid are given by: 
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where fu  and f   denote the fluid 

velocity components in the axial and radial 

direction, 
e is the density of the fluid suspension, 

P is the pressure, 1 and 2 are the retardation 

time and the ratio of relaxation and retardation time 

respectively, 0B , the applied uniform magnetic 

field,  is the dynamic viscosity of the fluid, sK

is the Stokes constant, pN is the number of 

magnetic nanoparticles per unit volume of blood 

and 
 


fpps uuNK 
is the interaction force 

between motion of particles and fluid and  tG  is 

the periodic body force. 

Then the momentum equation governing the flow 

of fluid in the cylindrical coordinate system is 

given by [Ponalagusamy (2016) & Chakraborty 

(2006)]: 
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and 10 , aa are the amplitude of steady pulsatile 

component of pressure gradient respectively and 

ppp ff .2   is the frequency of pulse. 

Assuming that the particles are having 

effective hydrodynamic radius phydE .  are 

uniformly distributed in the fluid and flow freely 

along with the fluid. There are number of forces 

acting on the particle such as magnetic force, 

buoyancy force and fluidic force through which we 

obtain the notion of the nanoparticles momentum 

equation in the axial direction as: 

 





tex

p
p F

z

u
M        (10) 

 

where  texF  is the total force exerted 

on the particles and equal to the sum of magnetic, 

buoyancy and fluidic forces. Omitting the 

buoyancy force, buoyancy force, believing that the 

particle experience only the fluidic force, we get 

the expression for the flow governing equation of 

the particles with respect to Stokes’s law as [mirza 

et al (2017)]. 
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where pM is the mass of single particle, fp uu   is the relative velocity and  pfphyds uuEK  .6   

is the Stokes constant and the negative sign indicate that the motion of the fluid and particles are in opposite 

direction. 

The corresponding initial and boundary conditions are for the proposed problem as: 

      0,1,0
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With the aid of electrostatics theory, the relationship between the net charge density e and the potential 

distribution  r is given by the expression 
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Known as the Boltzmann equation with the boundary condition and the net charge density 
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where   is the dielectric constant, 
w is the potential on the arterial wall, 

nTkenz eg ,,,,, 000 and 

n are the ion valence, concentration of ions, the electronic charge, the Boltzmann constant, the local absolute 

temperature of the fluid, the density number of cations and anions respectively. 

Using Debye-Huckel parameter 
 

egTk

rnez
k




0
2

0

2

0
2 2

 and linearized the Boltzmann equation we get a potential 

equation as: 
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The introducing dimensionless parameter to the flow governing equations are: 
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Applying equation (17) to the above flow equations subject to the dimensionless initial and boundary conditions 

and dropping the bars yield to the following equations:  
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where 
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22 RkKe  are the 

pulsatile Reynolds number (womersley parameter), particle concentration parameter, Hartmann number 

(magnetic parameter) and electrokinetic width parameter. 

 

2.4 Solution Techniques 
The solution to equation (18) subject to equation 

(21) is  

 
 
 KI

rKI
r e

0
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  (22) 

where 0I is the modified Bessel function of first 

kind and order zero. 

Hence, we will consider the time fractional 

momentum equations, based on Caputo-Fabrizio 

fractional derivative. 
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Now the fractional differential equation with Caputo-Fabrizio derivative corresponding to momentum equation 

(18-20). 
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where    taa
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P
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Applying Laplace transform on equations (25) and (26), and using the definition in equation (23) we have: 
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where  
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Rearranging equations (27) and (28)  
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Making ),( sru p subject in equation (30) and substitute in equation (31), and rearranging we have 
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(32) 

Applying the finite Henkel transform of order zero to equation (34), we obtained  
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Now applying the inverse Henkel transform on equation (34) we have 
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And for the velocity of the magnetic nanoparticles, we substitute equation (36) into equation (31) and obtained 
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The inverse Laplace transform of equation (36)- 

(37), with the aid of Gerby- Stephan's Algorithm 

were taken and the results are simulated graphically 

with the aid of MATCARD software. 

 

III. RESULTS AND DISCUSSION 
This section presented the numerical results 

simulated in graphical form for the fractional blood 

flow as a non-Newtonian fluid of Jeffery type 

through a stenosis artery.  

 

3.1Velocity Field Profile 
 The blood flows with magnetic particle 

through an artery as a Jeffrey fluid were analyzed 

using Caputo-Fabrizio time fractional derivative 

under the influence of electric and magnetic fields. 

In order to have are good understanding of the 

effect of the fractional parameter on physiology of 

the flow pattern, the numerical results are presented 

graphically using Mathcad software for an explicit 

and noteworthy discussion. In this  regard, we 

assume the following dimensionless physical 

parameters such asa0 = 0.5, a1 = 0.5,ωp =
π

4
. 

An improved Mathematical modeling of 

fractional blood flow as a non-Newtonian blood 

fluid of Jeffery type through Stenosed arteries 

concerning the influence of externally imposed 

magnetic and electric filed are numerically 

simulated with help of graphs in Figure 3-10. For 

all computational simulations and their 

corresponding figures, the values of governing 

parameters are listed in section in all corresponding 

figures in question.However, we were interested, to 

analyze the influence of Fractional and Classical 

fluid parameter on the fluid flow velocity in all 

cases. 
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(a) t = 0.01       (b) t = 0.05 

 

 
(c)  t = 0.1     (d) t = 0.25 

Figure 3: Dimensionless Fluid velocity distribution with axial distance for different fractional parameter for time 

t increment with G = 0.8, λ1 = 0.4, M = 1.0, K = 0.5, K = 0.5, R = 0.5, β = 0.7. 
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(a) t = 0.01    (b) t = 0.05 

 

 

 

 

 
(c) t =0.1      (d) t = 0.25 

Figure 4: Dimensionless Particle velocity distribution with axial distance for different fractional parameter for 

time t increment with G = 0.8, λ1 = 0.4, M = 1.0, K = 0.5, K = 0.5, R = 0.5, β = 0.7 

 

Figure 3 & 4 shows the detail influence of 

the fractional parameter on the fluid and particle 

dimensionless velocity distribution against the axial 

distance, which depict that at smaller value of time 

t the fractional fluid move faster than the classical 

fluid while at larger values of time t the classical 

fluid is faster than the fractional fluid which is in 

agreement with Abdulhameed et al (2017) on 

fractional bio-fluid and Yakubu et al (2020) on 
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fractional blood flow in an artery with magnetic effect. 

 

(a) 0.1       (b) 2.0  

Figure 5: Dimensionless Fluid velocity distribution with axial distance for different pulsatile Reynolds number 

(Womersly parameter) for classical and fractional fluids with G = 0.8, λ1 = 0.4, M = 1.0, K = 0.5, K = 0.5,
R = 0.5 

 

 
(a) 0.1      (b) 0.1  

Figure 6: Dimensionless Particle velocity distribution with axial distance for different pulsatile Reynolds 

number (Womersly parameter) forclassical and fractional fluids with G = 0.8, λ1 = 0.4, M = 1.0, K = 0.5, K =
0.5, R = 0.5. 

 

Figure 5 & 6 presented the effect of 

pulsatile Reynolds number (Womersly parameter) 

on the fluid and particle dimensionless velocity 

distribution against the axial distance, which 

indicated that the Womersly parameter has more 

effect on the velocity of the classical fluid than on 

the fractional fluid and the effect is more on the 

velocity of the particle then the velocity of the 

fluid. 
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(a) 0.1      (b)  4.0  

Figure 7: Dimensionless Fluid velocity distribution with axial distance for different Hartmann number with  G =
0.8, λ1 = 0.4, K = 0.5, K = 0.5, R = 0.5, β = 0.7. 

 
(a )  1       (b)  4.0  

Figure 8: Dimensionless Particles velocity distribution with axial distance for different Hartmann number 

with  G = 0.8, λ1 = 0.4, K = 0.5, K = 0.5, R = 0.5, β = 0.7 

 

The effect of the magnetic field on the 

dimensionless velocity of the fluid and particle is 

shown on figure 7 and 8, where the result revealed  

that magnitude of the dimensionless velocity of the 

fractional fluid is more than that of the classical 

fluid due to the magnetic field effect which 

decelerates the velocity due to the induce Lorentz 

force that opposed the motion of the fluid and 

particle, and it shows that that the induced Lorentz 
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force has greater effect on the particle because of their magnetic nature. 

 

 
  (a )  1       (b)  4.0  

Figure 9: Dimensionless Fluid velocity distribution with axial distance for different Jeffrey parameter with  G =
0.8, M = 1.0, K = 0.5, K = 0.5, R = 0.5, β = 0.7. 

 
Figure 10: Dimensionless Particle velocity distribution with axial distance for different Jeffrey  parameter 

with  G = 0.8, M = 1.0, K = 0.5, K = 0.5, R = 0.5, β = 0.7. 

 

Figure 9 & 10 are plotted to show the 

effect of the Jeffrey parameter on the dimensionless 

velocity of the fluid and particles, where the graph 

indicated a slightest difference in the effect on the 

velocity of the fluid, which shows that the velocity 

of the fractional fluid is little higher than that of the 

classical fluid, but show no difference in velocity 

of the particle between the fractional fluid and the 

classical fluid. 

 

 

 

IV. CONCLUSION 
The present research work considered the 

Caputo-Fabrizio time fractional order derivative 

effect of the physiology electro hydrodynamic 

blood and magnetic nanoparticles flow as a non-

Newtonian fluid of Jeffrey model in the arteries 

with applied magnetic field, where the analytic 

solution for the velocity profile were obtained for 

both the fluid and the nanoparticles. And these are 

some of our main findings as follows: 

 For smaller time the influence of the fractional 

parameter is more significant than for higher 
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time for both the fluid and the magnetic 

nanoparticles. 

 The velocity of the fluid or the nanoparticle 

can be controlled by regulating the fractional 

parameter. 

 Numerical results were obtained in graph to 

compare physiological behaviors of the fluid 

and magnetic nanoparticles for the fractional 

order model fluid with the classical model 

fluid. 

 It was observed that for the Womersley 

parameters and Hartmann number the velocity 

of both fluid and particles, the fractional model 

fluid is faster than that of the classical model 

fluid, and for the Jeffrey parameter, it has the 

same effect on fluid but no difference on the 

nanoparticles models. 
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